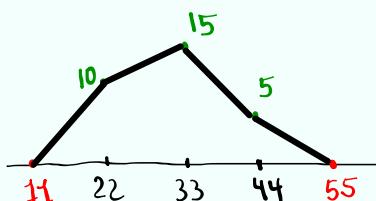


Statistics

Lecture 3

Feb 19 8:47 AM

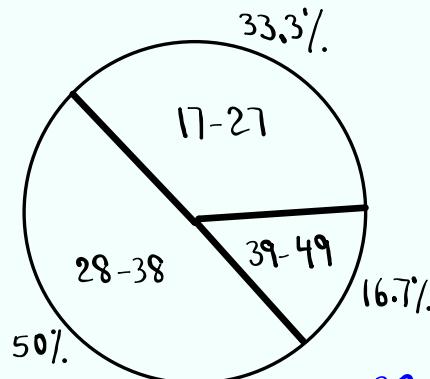
Complete the chart below:


class limits	class BNDRS	class F	Cum. F	Rel. F	class MP
17 - 27	16.5 - 27.5	10	10	.333	22
28 - 38	27.5 - 38.5	15	25	.500	33
39 - 49	38.5 - 49.5	5	30	.167	44

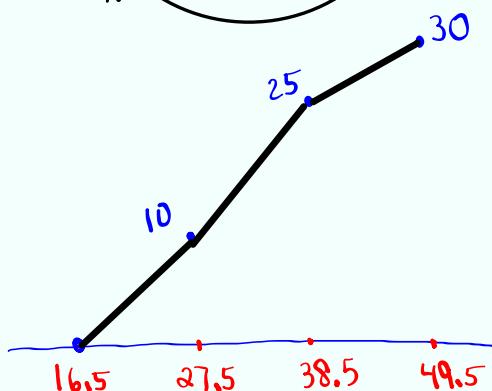
3 - classes , CW = 11 , $n = 30$

$$\text{Rel. F} = \frac{f}{30}$$

Freq. Polygon


- class MP
- class F
- additional MP, one on each Side

Jan 8-4:31 PM


Pie chart

- Circle
- class limits
- %. F

Ogive

- class BNDRS
- Cum. F

Jan 8-4:40 PM

Consider the Sample below

4 6 6 8 8 10

1) $n = 6$

2) Range = $10 - 4 = 6$

3) Midrange

$$= \frac{10+4}{2} = 7$$

4) Mode = 6 & 8

5) Median = $\frac{6+8}{2} = 7$

6) $\sum x = 42$

7) $\sum x^2 = 316$

8) $\bar{x} = \frac{\sum x}{n} = \frac{42}{6} = 7$

Sample Mean

9) $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)}$

Sample Variance

10) $S = \sqrt{S^2} = \sqrt{4.4} \approx 2.098$

Sample standard deviation

$$= \frac{132}{30} = 4.4$$

Jan 8-4:45 PM

More on S^2 & S :

1) $S^2 \geq 0$

when $S^2 = 0$, All data elements are equal to \bar{x} .

2) $S \geq 0$

when $S = 0$, all data elements are equal to \bar{x} .

when S is small, data elements are close to \bar{x} .

when S is big, data elements are more spread out from \bar{x} .

Standard deviation indicates how data elements are spread from the mean.

Jan 8-4:53 PM

Consider the Sample below

1 1 2 3 3

$$n=5 \quad \sum x = 10 \quad \sum x^2 = 24$$

$$\bar{x} = \frac{\sum x}{n} = \frac{10}{5} = 2$$

$$S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)} = \frac{5 \cdot 24 - 10^2}{5(5-1)} = \frac{20}{20} = 1$$

$$S = \sqrt{S^2} = \sqrt{1} = 1$$

Now consider

1 1 2 3 30

$$n=5 \quad \sum x = 37 \quad \sum x^2 = 915$$

$$\bar{x} = \frac{37}{5} = 7.4 \quad S^2 = 160.3 \quad S = 12.661$$

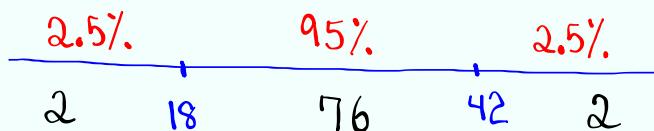
Jan 8-4:58 PM

Empirical Rule:

About 68% of data elements are within $\bar{x} \pm s$

About 95% of data elements are within $\bar{x} \pm 2s$

USUAL Range


About 99.7% of data elements are within $\bar{x} \pm 3s$

Jan 8-5:04 PM

I randomly selected 80 students. their mean age was 30 with standard deviation 6. $n=80$, $\bar{x}=30$, $s=6$

68% Range $\rightarrow \bar{x} \pm s = 30 \pm 6 \rightarrow [24 \text{ to } 36]$

95% Range $\rightarrow \bar{x} \pm 2s = 30 \pm 2(6)$
USUAL Range $= 30 \pm 12 \rightarrow [18 \text{ to } 42]$

95% of 80 = .95(80)

Jan 8-5:07 PM

Salaries of randomly selected nurses had mean of \$6200 with standard deviation of \$400. $\bar{x} = 6200$, $s = 400$

Maria makes \$7200/mo. Is that usual salary?

Usual Range
95% Range

$$\bar{x} \pm 2s =$$

$$6200 \pm 2(400) =$$

$$6200 \pm 800 =$$

5400 to 7000

Maria's salary is unusually high.

Jan 8-5:13 PM

Z-Score

$$Z = \frac{x - \bar{x}}{s} \quad \text{Always round to 3 decimal places.}$$

It is a value that indicates how many standard deviation is the data element above or below the mean.

It is a way to standardize data elements.

It allows us to compare data elements from different samples.

When $-2 \leq Z \leq 2 \rightarrow$ data element is usual.

When $Z < -2$ or $Z > 2 \rightarrow$ data element is unusual.

unusual -2 2 unusual

Jan 8-5:17 PM

Exam I: $\bar{x} = 88$, $s = 5$

Isabella got 95.

$$z = \frac{x - \bar{x}}{s} = \frac{95 - 88}{5} = \frac{7}{5} = 1.4$$

Since $-2 \leq z \leq 2$ \rightarrow her exam score is usual.

Exam II: $\bar{x} = 75$, $s = 8$

Isabella got 92.

$$z = \frac{x - \bar{x}}{s} = \frac{92 - 75}{8} = 2.125$$

Since $z > 2$, her exam score is unusually high.

Jan 8-5:24 PM

Nurses: $\bar{x} = 6200$, $s = 400$

Maria makes \$6600

Sales: $\bar{x} = 8000$, $s = 500$

John makes \$8500

Who is doing better?

$$\text{Maria: } z = \frac{x - \bar{x}}{s} = \frac{6600 - 6200}{400} = 1$$

$$\text{John: } z = \frac{x - \bar{x}}{s} = \frac{8500 - 8000}{500} = 1$$

They are doing the same.

Jan 8-5:29 PM

I randomly Selected 25 exams, here are the Scores:

58 59 63 68 68 1) $n=25$

70 72 76 76 76 2) Range = $100 - 58 = 42$

79 80 83 85 85 3) Estimate S

85 88 89 92 93

93 95 100 100 100 $S \approx \frac{\text{Range}}{4}$

$$= \frac{42}{4} = 10.5$$

4) Make STEM Plot

5 | 8 9
6 | 3 8 8
7 | 0 2 6 6 6 9
8 | 0 3 5 5 5 8 9
9 | 2 3 3 5
10 | 0 0 0

Jan 8-5:33 PM

5 | 8 9
6 | 3 8 8
7 | 0 2 6 6 6 9
8 | 0 3 5 5 5 8 9
9 | 2 3 3 5
10 | 0 0 0

How many Scores were below 70? 5

what % of Scores were below 70?

5 is what % of 25?

$$5 = \frac{P}{100} \cdot 25$$

$$P = 20$$

20% 80%
70

20%

Jan 8-5:40 PM

Percentile :

Notation P_K

Requirement Data must be Sorted

$K\%$ $(100-K)\%$

P_K

20% 80%

70

$P_{20}=70$

P_{90}

90% 10%

P_{90}

Jan 8-5:43 PM

How to find P_K

Make sure data is sorted

Find location Sample Size

$$L = \frac{K}{100} \cdot n$$

if L is decimal: Round-up

$P_K = L$ th element

if L is a whole: $P_K = \frac{L\text{th element} + \text{Next one}}{2}$

Jan 8-5:45 PM

5	8 9
6	3 8 8
7	0 2 6 6 6 9
8	0 3 5 5 5 8 9
9	2 3 3 5
10	0 0 0

Find P_{30}

$$L = \frac{30}{100} \cdot 25 = 7.5$$

 L is decimal \rightarrow Round-up

$$L = 8$$

$$\underline{30\% \quad 70\%}$$

$$76$$

 $P_{30} = 8^{\text{th}}$ element

$$= \boxed{76}$$

Find P_{80}

$$L = \frac{80}{100} \cdot 25 = 20$$

$$\leftarrow \text{whole } \# \quad P_{80} = \frac{\text{20th element} + \text{Next one}}{2}$$

$$\underline{80\% \quad 20\%}$$

$$P_{80} = 93$$

$$= \frac{93 + 93}{2} = \boxed{93}$$

Jan 8-5:48 PM

5	8 9
6	3 8 8
7	0 2 6 6 6 9
8	0 3 5 5 5 8 9
9	2 3 3 5
10	0 0 0

Doing reverse

Find K

$$K = \frac{B}{n} \cdot 100$$

Below

Sample
Size

Round to whole %.

Find K suchthat $P_K = 80$

$$K = \frac{B}{n} \cdot 100 = \frac{11}{25} \cdot 100$$

$$\underline{44\% \quad 56\%}$$

$$80$$

$$= \boxed{144}$$

$$P_{44} = 80$$

Jan 8-5:53 PM

TI Instructions:

1) To clear the screen clear2) To quit 2nd MODE

3) To clear all lists.

2nd + 4: Clear All Lists Enter

4) To reset all lists

STAT Edit
5: Setup Editor Enter

Jan 8-6:10 PM

How to store data in a list.

I want to store the sample below in L1.

12 18 5 8 10

15 4 19 20 19

STAT Edit1: Edit

L1
12
18
5
8
10
15
4
19
20
19

Let's quit

2nd Mode

Clear the Screen

Clear

Jan 8-6:15 PM

Let's view L1:

2nd **1** **Enter**

{12 18 5 8 10 19}

How to Sort L1:

STAT **Edit**

2:SortA(**2nd** **1** **Enter**

Let's view L1:

2nd **1** **Enter**

{4 5 8 10 12

Jan 8-6:20 PM

How to find \bar{x} & S:

STAT **CALC**

1:1-Var Stats

with Menu

List: L1

Freq List: **clear**

Calculate

2nd **1**

No Menu

L1 **Enter**

$\bar{x}=13$

$\sum x=130$

$\sum x^2=2020$

$S=S_x=6.055$

$\downarrow n=10$

\downarrow

\downarrow

\downarrow

$Min=4$

$Q_1=8$

$Median=13.5$

$Q_3=19$

$Max=20$

5-number Summary

Jan 8-6:26 PM

How to find S^2 :

[VARS] VARS xy x^2
5: Statistics **3:Sx** **Enter**

$$S^2 = 36.66666\dots$$

Convert to reduced fraction

[Math] **1:►Frac** **Enter** $S^2 = \frac{110}{3}$

Clear the Screen **Clear**

clear all lists **2nd** **+** **4:clear all lists**
Enter

Jan 8-6:31 PM

I randomly selected 12 students. Here are their ages.

24 32 28 18 20 30 35 19 21 40 34 29

1) Store in L1
STAT Edit
1:Edit

quit & clear Screen

2nd **Mode** **Clear**

L1

24
32
28
18
20
30
35
19
21
40
34
29

Jan 8-6:38 PM

Sort L1, then view it.

STAT

Edit

2:SortA(

2nd

1

Enter

to view it

2nd

1

Enter

{18 19 20

→ → →

STEM Plot

1	8 9
2	0 1 4 8 9
3	0 2 4 5
4	0

Jan 8-6:41 PM

find $\bar{x} \notin S$

STAT

→ CALC

1:1-Var Stats

List: L1

FreqList: clear

Calculate

2nd

1

NO Menu

L1 Enter

Min = 18

$Q_1 = 20.5$

Med. = 28.5

$Q_3 = 33$

Max = 40

5-Number
Summary

$\bar{x} = 27.5$

$\sum x = 330$

$\sum x^2 = 9632$

$S = S_x = 7.116$

$n = 12$

Jan 8-6:45 PM

find S^2 in reduced fraction.

VARS **5: Statistics** **3:S_x**

χ^2 **Enter**

$$S^2 = 50.63$$

Math **1:►Frac** **Enter**

$$S^2 = \frac{557}{11}$$

Jan 8-6:50 PM

How to find
 \bar{x} & S from a grouped data

freq. table

class limit	class MP	class F
12 - 20	16	4
21 - 29	25	10
30 - 38	34	6

1) clear all lists,

2nd **[+]** **4: clearAllList**
Enter

2) class MP → L1
 class F → L2

3) **STAT** **► CALC**

1:1-Var Stats

List: L1

Freq List: L2

Calculate

NO MENU

L1, L2

[1]
Enter

$$\bar{x} = 25.9$$

$$S = S_x = 6.464$$

$$n = 20$$

Jan 8-6:56 PM

find s^2 in reduced fraction

1: VARS 5: statistics 3: s_x

χ^2 Math 1: Frac Enter

$$s^2 = \frac{3969}{95}$$

Jan 8-7:06 PM

class QZ 1

Consider the Sample below

2 4 6 6 8 9 10

1) $n = 7$

2) Range = $10 - 2 = 8$

3) Midrange = $\frac{10+2}{2} = 6$

4) Mode = 6

5) Median = 6

Jan 8-7:09 PM